单片机

单片机

1.单片机内部

  • Flash 程序储存空间
  • SFR 特殊功能寄存器
  • RAM 内存

2.单片机的最小系统

  • 电源电路:单片机常见的电源电压为5/3.3伏,电脑的USB接口的电压为5V
  • 复位电路:使单片机每次开机时,都从一个固定的状态开始运行。当程序运行出错时,按复位按键重新开始。“开门狗”程序可自动复位。
  • 晶振电路:控制单片机运行的节奏(?)

9eb056f437068b376d3d72061c4d587

3.LED小灯

通常红色贴片LED:靠电流驱动,电压1.8V~2.2V,电流1到20mA,在1到5mA亮度有所变化,5mA以上亮度基本无变化,放置限流电阻为防止小灯烧坏fbc8eb473fd2298a8aaf0c29204c554

通过控制p0.0点的电压,来控制小灯亮灭

4.点亮LED灯实现

  1. 新建工程:projiect——第一个选项

  2. 新建文件夹保存22dc8119c79ea57cd6a0db9c6924ce0

  3. 点击938df9530f9a9db1e42871e6cbd624e

  4. 右键后选择Add Files to Group…a6396402ab0b50502fae048cd0d5c7e726b4305e12967c0dc8c0ea8add9453

  5. 输入代码

    #include<reg52.h>

    sbit LED = p0^0;
    sbit ADDR0 = p1^0;
    sbit ADDR0 = p1^1;
    sbit ADDR0 = p1^2;
    sbit ADDR0 = p1^3;
    sbit ADDR0 = p1^4;

    void main()
    {
    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 1;
    ADDR1 = 1;
    ADDR0 = 0;

    LED = 0;
    while(1);
    }
  6. 单片机无法识别c语句,将语句转换2c34e10ef494b16e5ed156da62050f0

6.点击上方的方块,运行成功后会创建hex文件

29c5aab5a502107c3c4aacbfa914b70

7.连接板子,打开设备管理器查看板子连接的端口名称(一般是COM4)

8.打开STC_ISP_V483

892e37a553d4da001c0f34d8f2a33ce

9.按下开关,开始下载,LED小灯点亮,项目完成

5.硬件基础知识

  1. 电磁干扰

    • 冬天的时候,空气比较干燥的城市,朋友们经常对电脑,铁柜等等放电,这就是“静电放电(ESD)”干扰。
    • 使用电钻的时候听收音机,看电视有杂音,这就是“快速瞬间脉冲群(EFT)”的效果。
    • 电脑性能不好,热插拔优盘等外围设备会出现蓝屏重启电脑等现象,这就是热插拔“浪涌(Surge)的效果。
  2. 去耦电容的使用

    • 低频滤波电容,平常应用最多的是钽电容,电解电容,陶瓷电容,起到去除电源低频纹波,稳定电源的作用。
    • 高频滤波电容,电源附近,通常用104电容来进行去除高频干扰。10*104pf
  3. 三极管:三极管是模拟电路和数字电路中经常会用到的一个器件。

    • 三极管的型号记忆方式:箭头朝内PNP,导通电压顺箭头过,电压导通(0.7伏),电流控制 b:基极 e:射极 c:集电极image-20240221104340191

    • 当p0.0是低电平时,三极管导通,小灯亮;当p0.0是高电平时,三极管截止,小灯灭。通过点平控制三极管状态,达到小灯亮灭的效果

  4. 电流缓冲器74HC245image-20240221110050096

  5. 38译码器74H138

    通过三个数字控制八种状态

    当使LED6亮起使

    image-20240221111046853

    image-20240221111350859

    image-20240221111657694

6.流水灯的实现

  1. 51单片机延时常用方法

    小灯延时小于20ms时,肉眼不易察觉,

  2. 把软件的晶振改为与单片机相同的晶振image-20240221150948809image-20240221151118218

    通过下边过程查看时间是否符合大于20ms

    通过view-watch windows-watch1 可获取i的值image-20240221154317584

  3. P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0小灯用十六进制表示为0xFE, 0xFD,0xFB,0xF7,0xEF,0xDF, 0xBF,0x7F

  4. 代码一

    #include <reg51.h>


    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    void main()
    {
    unsigned int i =0;

    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 1;
    ADDR1 = 1;
    ADDR0 = 0;

    while(1){
    p0 = 0xFE;
    for(i=0; i<30000; i++);
    p0 = 0xFD;
    for(i=0; i<30000; i++);
    p0 = 0xFB;
    for(i=0; i<30000; i++);
    p0 = 0xF7;
    for(i=0; i<30000; i++);
    p0 = 0xDF;
    for(i=0; i<30000; i++);
    p0 = 0xBF;
    for(i=0; i<30000; i++);
    p0 = 0x7F;
    for(i=0; i<30000; i++);
    p0 = 0xFE;
    for(i=0; i<30000; i++);
    }
    }

    代码二

      while(1){
    p0 = ~(0x01<< cnt);
    for(i=0; i<30000; i++);
    cnt++;
    if(cnt >=8)
    {
    cnt = 0;
    }
    }

7.定时器与数码管

  1. 逻辑电路与逻辑运算

  2. 定时器

    • 时钟周期:单片机时序中的最小单位,具体计算的方法就是时钟源分之一。(也就是晶振分之一,咱们的晶振时11.0592)
    • 机器周期:我们的单片机完成一个操作的最短时间。
    • 定时器:打开定时器后,定时器”存储寄存器”的值经过一个机器周期自动加1,也就是说,机器周期是定时器的计数周期。
  3. image-20240221163054970

  4. 计算方式(lihuibear写的就是好

    1. 频率:频率是单位时间内完成周期性变化的次数
    2.一个时钟周期 = 12 个机器周期
    假设我们单片机的晶振是11.0592MHz,那么一秒钟可产生的机器周期数  11.0592MHz / 12 = 921600 个,
    如果我们要定时50 ms,即0.05 s,所以需要921600 * 0.05 = 46080个机器周期。而如果我们的定时器工作
    在16位定时器/计数器模式,那么最大值为 2^16=65536,所以初值设置为 65536-46080 = 19456。
    十六进制写法为:
    TH0 = 0X4c;
    TL0 = 0x00;
    十进制写法为:
    TH0 = (65536-46080)/256;
    TL0 = (65536-46080)%256;
    (16位二进制数对256求模得到的是高八位,同理求余得到的是低八位)
  5. TCON——定时器控制寄存器

    • TF0:定时器0溢出标记 ,记录溢出次数
    • TR0:定时器0运行控制位,TR0 = 0停止,TR0 = 1 开始
  6. TMOD——定时器模式寄存器

    image-20240221200209542

  7. 使用定时器的方法

    1. 设置特殊功能寄存器TMOD,配置好工作模式。image-20240221195356617
    2. 设置计数寄存器TH0和TL0的初值。
    3. 设置TCON,通过TR0置1来让定时器开始计数。image-20240221195657773
    4. 判断TCON寄存器的TF0位,监测定时器溢出情况。image-20240221195717326
  8. 代码

    #include<reg52.h>

    sbit LED = P0^0;
    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    void main()
    {
    unsigned char cnt = 0;
    unsigned char flag = 0;
    //unsigned int i=0;
    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 1;
    ADDR1 = 1;
    ADDR0 = 0;

    TMOD = 0x01;
    TH0 = 0xB8; // x * 12 /11059200 = 0.2 x = 18432 TH0 = 65535 + 1 - x
    TL0 = 0x00;
    TR0 = 1;

    while(1)
    {
    if(TF0 == 1)
    {
    TF0 = 0;
    TH0 = 0xB8;
    TL0 = 0x00;
    cnt++;
    if(cnt>=50)
    {
    cnt = 0;
    P0 = ~(0x01<<flag);
    flag++;
    if(flag>=8){
    flag = 0;
    }
    }
    }
    }
    }
  9. 数码管原理和结构图image-20240221201215589

  10. 数码管真值表image-20240221201536249

  11. 代码(数码管显示0-F)

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    unsigned char code LedChar[]={
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };

    void main()
    {
    unsigned char cnt = 0;
    unsigned char sec = 0;

    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 0;
    ADDR1 = 0;
    ADDR0 = 0;

    TMOD = 0x01;
    TH0 = 0xB8;
    TL0 = 0x00;
    TR0 = 1;
    while(1)
    {
    if(TF0 == 1)
    {
    TF0 = 0;
    TH0 = 0xB8;
    TL0 = 0x00;
    cnt++;
    if(cnt >= 50)
    {
    cnt = 0;
    P0 = LedChar[sec];

    if(sec >= 15)
    {
    sec = 0;
    }
    else
    {
    sec++;
    }
    }

    }
    }
    }

8.中断与数码管动态显示

  1. 动态显示的基本原理

    • 动态显示: 多个数码管显示数字的时候,我们实际上是轮流点亮数码管(一个时刻只有一个数码管是亮的),利用人眼的视觉暂留现象(也叫余晖效应)。
    • 刷新周期<10ms(100Hz无闪烁)
    • 刷新速度没必要过快
  2. 代码(多个数码管显示数字并计时)

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    unsigned char code LedChar[]={
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };
    unsigned char LedBuff[6]={
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
    };

    void main()
    {
    unsigned int cnt = 0;
    unsigned long sec = 0;
    unsigned char i = 0;

    ENLED = 0;
    ADDR3 = 1;
    TMOD = 0x01;
    TH0 = 0xFC;
    TL0 = 0x67;
    TR0 = 1;

    while(1)
    {
    if(TF0 ==1)
    {
    TF0 = 0;
    TH0 = 0xFC;
    TL0 = 0x67;
    cnt++;
    if(cnt >= 1000)
    {
    cnt = 0;
    sec++;
    LedBuff[0] = LedChar[sec%10];
    LedBuff[1] = LedChar[sec/10%10];
    LedBuff[2] = LedChar[sec/100%10];
    LedBuff[3] = LedChar[sec/1000%10];
    LedBuff[4] = LedChar[sec/10000%10];
    LedBuff[5] = LedChar[sec/100000%10];
    }

    if(i == 0)
    {ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=LedBuff[0];}
    else if(i == 1)
    {ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=LedBuff[1];}
    else if(i == 2)
    {ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=LedBuff[2];}
    else if(i == 3)
    {ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=LedBuff[3];}
    else if(i == 4)
    {ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=LedBuff[4];}
    else if(i == 5)
    {ADDR2=1; ADDR1=0; ADDR0=1; i=0; P0=LedBuff[5];}

    }
    }
    }
  3. 中断

    • IE—中断使能寄存器的位分配(地址0xA8、可位寻址)image-20240222095910429image-20240222095952446

    • 中断查询序列image-20240222103120345

    • 进入中断的条件

      1.打开中断(EA,ET0)
      2.符合中断条件
      3.中断入口正确 interrupt x
      计算方法:
      x * 8 + 3 = 中断向量地址
    • 中断优先级说明

      1.当设置为默认中断固有优先级时:
      当几个中断同时发生时,则先处理中断优先级高的中断程序,在处理任意中断期间发生中断,都不会响应
      2.当配置了中断优先级,即抢占优先级
      同时发生中断,优先级高的先响应,在处理任意中断时,发生同级别或低级的中断,则不响应,发生优先级更高的中断时,则先处理高优先级中断,处理完毕,再回来处理当前中断。

      image-20240222104914428

    • 使用中断优化后的代码

      #include<reg52.h>

      sbit ADDR0 = P1^0;
      sbit ADDR1 = P1^1;
      sbit ADDR2 = P1^2;
      sbit ADDR3 = P1^3;
      sbit ENLED = P1^4;

      unsigned char code LedChar[]={
      0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
      0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
      };
      unsigned char LedBuff[6]={
      0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
      };


      unsigned int cnt = 0;

      void main()
      {

      unsigned long sec = 0;


      ENLED = 0;
      ADDR3 = 1;
      TMOD = 0x01;
      TH0 = 0xFC;
      TL0 = 0x67;
      TR0 = 1;
      EA = 1;
      ET0 = 1;

      while(1)
      {
      if(cnt >= 1000)
      {
      cnt = 0;
      sec++;
      LedBuff[0] = LedChar[sec%10];
      LedBuff[1] = LedChar[sec/10%10];
      LedBuff[2] = LedChar[sec/100%10];
      LedBuff[3] = LedChar[sec/1000%10];
      LedBuff[4] = LedChar[sec/10000%10];
      LedBuff[5] = LedChar[sec/100000%10];
      }
      }
      }

      unsigned char i = 0;
      void InterruptTimer0() interrupt 1
      {
      TH0 = 0xFC;
      TL0 = 0x67;
      cnt++;
      P0 = 0xFF;
      switch(i)
      {
      case 0: ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=LedBuff[0];break;
      case 1: ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=LedBuff[1];break;
      case 2: ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=LedBuff[2];break;
      case 3: ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=LedBuff[3];break;
      case 4: ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=LedBuff[4];break;
      case 5: ADDR2=1; ADDR1=0; ADDR0=1; i=0; P0=LedBuff[5];break;
      default:break;
      }
      }

9.点阵led

  1. 点阵led原理image-20240222114401673

  2. 取模软件的应用

    • 新建图像image-20240222114759232
    • 点击模拟动画可放大格点image-20240222114917210
    • image-20240222150331650
    • p0如果是控制一列,就选纵向取模;如果是控制一行,就选横向取模。
    • 字节倒叙:左大右小为正序,反之为倒叙image-20240222152204494
    • 点击取模方式,生成点阵位置image-20240222152530234
    • 可选择保存图像方便下次使用image-20240222153709030
  3. 代码(led灯显示图像(静态))

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    unsigned char code image[] = {
    0xFF,0x99,0x00,0x00,0x00,0x81,0xC3,0xE7
    };

    void main()
    {
    EA = 1;
    ENLED = 0;
    ADDR3 = 0;
    TMOD =0x01;
    TH0 = 0xFC;
    TL0 = 0x67;
    ET0 = 1;
    TR0 = 1;
    while(1);
    }

    void InterruptTimer0() interrupt 1
    {
    static unsigned char i = 0;
    TH0 = 0xfc;
    TL0 = 0x67;

    P0 = 0xFF;
    switch(i)
    {
    case 0: ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=image[index][0]; break;
    case 1: ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=image[index][1]; break;
    case 2: ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=image[index][2]; break;
    case 3: ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=image[index][3]; break;
    case 4: ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=image[index][4]; break;
    case 5: ADDR2=1; ADDR1=0; ADDR0=1; i++; P0=image[index][5]; break;
    case 6: ADDR2=1; ADDR1=1; ADDR0=0; i++; P0=image[index][6]; break;
    case 7: ADDR2=1; ADDR1=1; ADDR0=1; i=0; P0=image[index][7]; break;
    default: break;
    }
    }

  4. 代码(led显示动画(纵向))

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    unsigned char code image[] = {
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    0xC3,0xE7,0xE7,0xE7,0xE7,0xE7,0xC3,0xFF,
    0x99,0x00,0x00,0x00,0x81,0xC3,0xE7,0xFF,
    0x99,0x99,0x99,0x99,0x99,0x81,0x81,0xFF,
    0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    };

    void main()
    {
    EA = 1;
    ENLED = 0;
    ADDR3 = 0;
    TMOD =0x01;
    TH0 = 0xFC;
    TL0 = 0x67;
    ET0 = 1;
    TR0 = 1;
    while(1);
    }

    void InterruptTimer0() interrupt 1
    {
    static unsigned char i = 0;
    static unsigned char tmr = 0;
    static unsigned char index = 0;

    TH0 = 0xfc;
    TL0 = 0x67;

    P0 = 0xFF;
    switch(i)
    {
    case 0: ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=image[index+0]; break;
    case 1: ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=image[index+1]; break;
    case 2: ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=image[index+2]; break;
    case 3: ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=image[index+3]; break;
    case 4: ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=image[index+4]; break;
    case 5: ADDR2=1; ADDR1=0; ADDR0=1; i++; P0=image[index+5]; break;
    case 6: ADDR2=1; ADDR1=1; ADDR0=0; i++; P0=image[index+6]; break;
    case 7: ADDR2=1; ADDR1=1; ADDR0=1; i=0; P0=image[index+7]; break;
    default: break;
    }

    tmr++;
    if(tmr >= 250)
    {
    tmr = 0;
    index++;
    if(index>= 32)
    {
    index = 0;
    }
    }
    }

  5. 代码(led显示动画(纵向))

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    unsigned char code image[30][8] = {
    {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}, //动画帧1
    {0xFF,0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0x7F},
    {0xFF,0x3F,0x7F,0x7F,0x7F,0x7F,0x7F,0x3F},
    {0xFF,0x1F,0x3F,0x3F,0x3F,0x3F,0x3F,0x1F},
    {0xFF,0x0F,0x9F,0x9F,0x9F,0x9F,0x9F,0x0F},
    {0xFF,0x87,0xCF,0xCF,0xCF,0xCF,0xCF,0x87},
    {0xFF,0xC3,0xE7,0xE7,0xE7,0xE7,0xE7,0xC3},
    {0xFF,0xE1,0x73,0x73,0x73,0xF3,0xF3,0xE1},
    {0xFF,0x70,0x39,0x39,0x39,0x79,0xF9,0xF0},
    {0xFF,0x38,0x1C,0x1C,0x1C,0x3C,0x7C,0xF8},
    {0xFF,0x9C,0x0E,0x0E,0x0E,0x1E,0x3E,0x7C},
    {0xFF,0xCE,0x07,0x07,0x07,0x0F,0x1F,0x3E},
    {0xFF,0x67,0x03,0x03,0x03,0x07,0x0F,0x9F},
    {0xFF,0x33,0x01,0x01,0x01,0x03,0x87,0xCF},
    {0xFF,0x99,0x00,0x00,0x00,0x81,0xC3,0xE7},
    {0xFF,0xCC,0x80,0x80,0x80,0xC0,0xE1,0xF3},
    {0xFF,0xE6,0xC0,0xC0,0xC0,0xE0,0xF0,0xF9},
    {0xFF,0x73,0x60,0x60,0x60,0x70,0x78,0xFC},
    {0xFF,0x39,0x30,0x30,0x30,0x38,0x3C,0x7E},
    {0xFF,0x9C,0x98,0x98,0x98,0x9C,0x1E,0x3F},
    {0xFF,0xCE,0xCC,0xCC,0xCC,0xCE,0x0F,0x1F},
    {0xFF,0x67,0x66,0x66,0x66,0x67,0x07,0x0F},
    {0xFF,0x33,0x33,0x33,0x33,0x33,0x03,0x87},
    {0xFF,0x99,0x99,0x99,0x99,0x99,0x81,0xC3},
    {0xFF,0xCC,0xCC,0xCC,0xCC,0xCC,0xC0,0xE1},
    {0xFF,0xE6,0xE6,0xE6,0xE6,0xE6,0xE0,0xF0},
    {0xFF,0xF3,0xF3,0xF3,0xF3,0xF3,0xF0,0xF8},
    {0xFF,0xF9,0xF9,0xF9,0xF9,0xF9,0xF8,0xFC},
    {0xFF,0xFC,0xFC,0xFC,0xFC,0xFC,0xFC,0xFE},
    {0xFF,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFF} //动画帧30
    };

    void main()
    {
    EA = 1;
    ENLED = 0;
    ADDR3 = 0;
    TMOD =0x01;
    TH0 = 0xFC;
    TL0 = 0x67;
    ET0 = 1;
    TR0 = 1;
    while(1);
    }

    void InterruptTimer0() interrupt 1
    {
    static unsigned char i = 0;
    static unsigned char tmr = 0;
    static unsigned char index = 0;

    TH0 = 0xfc;
    TL0 = 0x67;

    P0 = 0xFF;
    switch(i)
    {
    case 0: ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=image[index][0]; break;
    case 1: ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=image[index][1]; break;
    case 2: ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=image[index][2]; break;
    case 3: ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=image[index][3]; break;
    case 4: ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=image[index][4]; break;
    case 5: ADDR2=1; ADDR1=0; ADDR0=1; i++; P0=image[index][5]; break;
    case 6: ADDR2=1; ADDR1=1; ADDR0=0; i++; P0=image[index][6]; break;
    case 7: ADDR2=1; ADDR1=1; ADDR0=1; i=0; P0=image[index][7]; break;
    default: break;
    }

    tmr++;
    if(tmr >= 250)
    {
    tmr = 0;
    index++;
    if(index>= 30)
    {
    index = 0;
    }
    }
    }

10.按键

  1. 单片机最小系统解析

    • 电源: 常用单片机的电源系统有5V系统和3.3V系统这两种。
      常用的数字电路系统的电源类别有24V、12V、5V、3.3V、2.5V、1.8V。

      工作电压:5V-3.4V(5V单片机)
      3.8V-2.0V(3V单片机)

    • 晶振(我们多用无源晶振)image-20240222172416682

    • 复位电路

      1. 上电复位

      2. 手动复位

      3. 硬件复位

      4. 复位时间计算(lihuibear说的就是好)

        1.247000.0000001=564us

        image-20240222180244861

        上电复位:

        复位时间t = 1.2RC 故:t = 1.2 * 4.7K *0.1uF = 564us, 大于两个机器周期约2us,故能起到复位作用。

        手动复位:人手按下按键的时间一般100ms以上,快的也有几十ms,故满足复位条件。18欧的电阻作用是放电时,K、R、C形成闭合回路,消除干扰。
  2. 独立按键原理

    • 当开关打开时,KeyIn1的电压是5V;当开关闭合时,KeyIn1的电压是0V。可以通过该点的电压来判断开关状态。image-20240223090257194

    • 当要判断开关状态时,自己必须要输出一个高电平:当内部输出是高电平时,取反为低电平,开关闭合时,单片机IO口检测到的是低电平。开关松开时,检测到高电平。image-20240223090859506

  3. 矩阵按键

    image-20240223091736825

    当KeyOut1输出低电平,345输出高电平时,矩阵按键就变为了独立按键

    image-20240223091945384

  4. 代码(独立按键控制led灯亮灭)按键按下时小灯亮,松开小灯灭

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    sbit LED9 = P0^7;
    sbit LED8 = P0^6;
    sbit LED7 = P0^5;
    sbit LED6 = P0^4;

    sbit KEY1 = P2^4;
    sbit KEY2 = P2^5;
    sbit KEY3 = P2^6;
    sbit KEY4 = P2^7;

    void main(){
    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 1;
    ADDR1 = 1;
    ADDR0 = 0;
    P2 = 0xF7;

    while(1){
    LED9 = KEY1;
    LED8 = KEY2;
    LED7 = KEY3;
    LED6 = KEY4;
    }

    }
  5. 代码(按键控制led灯亮灭)按键按下时改变多个小灯亮灭状态

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    sbit LED9 = P0^7;
    sbit LED8 = P0^6;
    sbit LED7 = P0^5;
    sbit LED6 = P0^4;

    sbit KEY4 = P2^7;

    unsigned char code LedChar[]={
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };

    void main(){
    bit backup = 1;
    unsigned char cnt = 0;

    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 1;
    ADDR1 = 1;
    ADDR0 = 0;
    P2 = 0xF7;
    P0 = LedChar[cnt];

    while(1){
    if(KEY4 != backup)
    {
    if(backup == 0)
    {
    cnt++;
    if(cnt >= 10)
    {
    cnt = 0;
    }
    P0 = LedChar[cnt];
    }
    backup = KEY4;
    }
    }

    }
  6. 代码(按键控制数码管数字显示)

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    sbit LED9 = P0^7;
    sbit LED8 = P0^6;
    sbit LED7 = P0^5;
    sbit LED6 = P0^4;

    sbit KEY4 = P2^7;

    unsigned char code LedChar[]={
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };

    void main(){
    bit backup = 1;
    unsigned char cnt = 0;

    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 0;
    ADDR1 = 0;
    ADDR0 = 0;
    P2 = 0xF7;
    P0 = LedChar[cnt];

    while(1){
    if(KEY4 != backup)
    {
    if(backup == 0)
    {
    cnt++;
    if(cnt >= 10)
    {
    cnt = 0;
    }
    P0 = LedChar[cnt];
    }
    backup = KEY4;
    }
    }

    }
  7. 按键消抖

    image-20240223100545965

  8. 代码(通过代码延时解决抖动问题,数码管数字显示 )

    #include <reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    sbit KEY4 = P2^7;

    // 数码管显示的字符编码
    unsigned char code LedChar[] = {
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };

    // 延时函数
    void delay() {
    unsigned int i = 1000;
    while (i--);
    }

    void main() {
    bit backup = 1; // 用于记录按钮按下状态的备份
    bit keybuf = 1; // 用于记录按钮当前状态
    unsigned char cnt = 0; // 计数器

    ENLED = 0;
    ADDR3 = 1;
    ADDR2 = 0;
    ADDR1 = 0;
    ADDR0 = 0;
    P2 = 0xF7;
    P0 = LedChar[cnt]; // 初始化数码管显示

    while (1) {
    keybuf = KEY4; // 读取按钮当前状态
    if (keybuf != backup) { // 如果按钮状态发生变化
    delay(); // 延时防抖
    if (keybuf == KEY4) { // 如果按钮仍然处于按下状态
    if (backup == 0) { // 如果之前是按下的状态
    cnt++; // 计数器递增
    if (cnt >= 10) {
    cnt = 0;
    }
    P0 = LedChar[cnt]; // 更新数码管显示
    }
    backup = KEY4; // 更新按钮状态备份
    }
    }
    }
    }

  9. 代码(不用delay消抖)

    以八个数字为一组,当检测到数组都是1时,为弹起的高电平状态,都是0时,为按下状态,01相间时,为抖动状态

    image-20240223102820703

    通过中断消抖

    void InterruptTimer0() interrupt 1
    {
    static unsigned char keybuf = 0xFF;

    TH0 = 0xF8;
    TL0 = 0xCD;

    keybuf = (keybuf <<1) |KEY4;
    if(keybuf == 0x00)
    {
    KeySta = 0;
    }
    else if(keybuf == 0xFF)
    {
    KeySta = 1;
    }
    else
    {
    }
  10. 代码(矩阵按键用中断消抖)

    #include<reg52.h>

    sbit ADDR0 = P1^0;
    sbit ADDR1 = P1^1;
    sbit ADDR2 = P1^2;
    sbit ADDR3 = P1^3;
    sbit ENLED = P1^4;

    sbit KEY_IN_1 = P2^4;
    sbit KEY_IN_2 = P2^5;
    sbit KEY_IN_3 = P2^6;
    sbit KEY_IN_4 = P2^7;
    sbit KEY_OUT_1 = P2^3;
    sbit KEY_OUT_2 = P2^2;
    sbit KEY_OUT_3 = P2^1;
    sbit KEY_OUT_4 = P2^0;

    unsigned char code LedChar[]={
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
    };
    unsigned char KeySta[4][4] = {
    {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}
    };

    void main()
    {
    unsigned char i, j;
    // 初始值全为1(未按下)
    unsigned char backup[4][4] = {
    {1,1,1,1},{1,1,1,1},{1,1,1,1},{1,1,1,1}
    };

    // 允许全局中断
    EA = 1;

    ENLED = 0;

    ADDR3 = 1;
    ADDR2 = 0;
    ADDR1 = 0;
    ADDR0 = 0;
    // 设置定时器0工作在方式1
    TMOD = 0x01;
    // 设置定时器0的初始值
    TH0 = 0xFC;
    TL0 = 0x67;
    // 允许定时器0中断
    ET0 = 1;
    // 启动定时器0
    TR0 = 1;
    // 初始化LED显示为LedChar数组中的第一个字符
    P0 = LedChar[0];

    // 主循环
    while(1)
    {
    for(i=0; i<4; i++)
    {
    for(j=0; j<4; j++)
    {
    // 检测状态是否发生变化
    if(backup[i][j] != KeySta[i][j])
    {
    // 如果按键按下
    if(backup[i][j] == 0)
    {
    // 在LED数码管上显示相应字符
    P0 = LedChar[i*4+j];
    }
    // 更新备份数组
    backup[i][j] = KeySta[i][j];
    }
    }
    }
    }
    }

    // 定时器0中断服务程序
    void InterruptTimer0() interrupt 1
    {
    // 静态变量,记录当前扫描的行号
    static unsigned char keyout = 0;
    unsigned char i = 0;
    // 静态二维数组,保存按键缓冲区,初始值为0xFF
    static unsigned char keybuf[4][4] = {
    {0xFF, 0xFF, 0xFF, 0xFF},
    {0xFF, 0xFF, 0xFF, 0xFF},
    {0xFF, 0xFF, 0xFF, 0xFF},
    {0xFF, 0xFF, 0xFF, 0xFF}
    };

    // 重置定时器0的初始值
    TH0 = 0xFC;
    TL0 = 0x67;

    // 将键盘输入值放入按键缓冲区
    keybuf[keyout][0] = (keybuf[keyout][0] <<1) | KEY_IN_1;
    keybuf[keyout][1] = (keybuf[keyout][1] <<1) | KEY_IN_2;
    keybuf[keyout][2] = (keybuf[keyout][2] <<1) | KEY_IN_3;
    keybuf[keyout][3] = (keybuf[keyout][3] <<1) | KEY_IN_4;

    // 检测按键状态
    for(i=0; i<4; i++)
    {
    if((keybuf[keyout][i] & 0x0F) == 0x00)
    {
    // 按键按下
    KeySta[keyout][i] = 0;
    }
    else if((keybuf[keyout][i] & 0x0F) == 0x0F)
    {
    // 按键释放
    KeySta[keyout][i] = 1;
    }
    }

    // 切换到下一行
    keyout++;
    keyout = keyout & 0x03;
    switch(keyout)
    {
    case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;
    case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;
    case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;
    case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;
    default: break;
    }
    }

11.步进机与蜂鸣器

  1. 单片机IO口

    image-20240223115413155

  2. 上下拉电阻

    • 上拉电阻就是将不确定的信号通过一个电阻拉到高电平,同时此电阻起到一个限流的作用,下拉就是下拉到低电平。

    • 1、OC门要输出高电平,外部必须加上拉电阻。

      2、加大普通IO口的驱动能力。

      3、起到限流的作用。

      4、抵抗电磁干扰。

    • 上下拉电阻的选取原则

      1、从降低功耗方面考虑应该足够大,因为电阻越大,电流越小。

      2、从确保足够的引脚驱动能力考虑应该足够小,电阻越小,电流才能越大。

      3、开漏输出时,过大的上拉电阻会导致信号上升沿变缓。image-20240223140320379

    • 28BYJ-48步进电机

      1. 反应式步进电机:结构简单成本低,发热大可靠性低。

        永磁式步进电机:动态性能好、力矩较大,误差相对大一些,价格低,广泛用在消费性产品。

        混合式步进电机:力矩大、动态性能好、步距角小、精度高,但是结构复杂价格高,广泛用在工业。

      2. 28——步进电机的有效最大外径是28毫米

        B——表示是步进电机

        Y——表示是永磁式

        J——表示是减速型

        48——表示四相八拍

      3. 内部结构image-20240224094428096

      4. 控制参数image-20240224094509504

  3. 蜂鸣器image-20240224094718240

    • 压电式蜂鸣器:电陶瓷片发音

      电磁式蜂鸣器:线圈通电,电动发音,体积较小

      有源蜂鸣器,指震荡源有源放鸣器内部带了震荡源

      无源蜂鸣器,价格便宜,但是可以产生高低音

    • D4:蓄流二极管,防止关断时,对三极管造成损伤

      蜂鸣器是感性元器件

  4. 代码(蜂鸣器发声)

    #include <reg52.h>

    sbit BUZZ = P1^6; //蜂鸣器控制引脚

    unsigned int code NoteFrequ[] = { //中音1-7和高音1-7对应频率列表
    523, 587, 659, 698, 784, 880, 988, //中音1-7
    1047, 1175, 1319, 1397, 1568, 1760, 1976 //高音1-7
    };
    unsigned int code NoteReload[] = { //中音1-7和高音1-7对应的定时器重载值
    65536 - (11059200/12) / (523*2), //中音1
    65536 - (11059200/12) / (587*2), //2
    65536 - (11059200/12) / (659*2), //3
    65536 - (11059200/12) / (698*2), //4
    65536 - (11059200/12) / (784*2), //5
    65536 - (11059200/12) / (880*2), //6
    65536 - (11059200/12) / (988*2), //7
    65536 - (11059200/12) / (1047*2), //高音1
    65536 - (11059200/12) / (1175*2), //2
    65536 - (11059200/12) / (1319*2), //3
    65536 - (11059200/12) / (1397*2), //4
    65536 - (11059200/12) / (1568*2), //5
    65536 - (11059200/12) / (1760*2), //6
    65536 - (11059200/12) / (1976*2), //7
    };
    bit enable = 1; //蜂鸣器发声使能标志
    bit tmrflag = 0; //定时器中断完成标志
    unsigned char T0RH = 0xFF; //T0重载值的高字节
    unsigned char T0RL = 0x00; //T0重载值的低字节

    void PlayTwoTiger();

    void main()
    {
    unsigned int i;

    EA = 1; //使能全局中断
    TMOD = 0x01; //配置T0工作在模式1
    TH0 = T0RH;
    TL0 = T0RL;
    ET0 = 1; //使能T0中断
    TR0 = 1; //启动T0

    while (1)
    {
    PlayTwoTiger(); //播放乐曲--两支老虎
    for (i=0; i<40000; i++); //停止一段时间
    }
    }
    /* 两只老虎乐曲播放函数 */
    void PlayTwoTiger()
    {
    unsigned char beat; //当前节拍索引
    unsigned char note; //当前节拍对应的音符
    unsigned int time = 0; //当前节拍计时
    unsigned int beatTime = 0; //当前节拍总时间
    unsigned int soundTime = 0; //当前节拍需发声时间
    //两只老虎音符表
    unsigned char code TwoTigerNote[] = {
    1, 2, 3, 1, 1, 2, 3, 1, 3, 4, 5, 3, 4, 5,
    5,6, 5,4, 3, 1, 5,6, 5,4, 3, 1, 1, 5, 1, 1, 5, 1,
    };
    //两只老虎节拍表,4表示一拍,1就是1/4拍,8就是2拍
    unsigned char code TwoTigerBeat[] = {
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8,
    3,1, 3,1, 4, 4, 3,1, 3,1, 4, 4, 4, 4, 8, 4, 4, 8,
    };

    for (beat=0; beat<sizeof(TwoTigerNote); ) //用节拍索引作为循环变量
    {
    while (!tmrflag); //每次定时器中断完成后,检测并处理节拍
    tmrflag = 0;
    if (time == 0) //当前节拍播完则启动一个新节拍
    {
    note = TwoTigerNote[beat] - 1;
    T0RH = NoteReload[note] >> 8;
    T0RL = NoteReload[note];
    //计算节拍总时间,右移2位相当于除4,移位代替除法可以加快执行速度
    beatTime = (TwoTigerBeat[beat] * NoteFrequ[note]) >> 2;
    //计算发声时间,为总时间的0.75,移位原理同上
    soundTime = beatTime - (beatTime >> 2);
    enable = 1; //指示蜂鸣器开始发声
    time++;
    }
    else //当前节拍未播完则处理当前节拍
    {
    if (time >= beatTime) //当前持续时间到达节拍总时间时归零,
    { //并递增节拍索引,以准备启动新节拍
    time = 0;
    beat++;
    }
    else //当前持续时间未达到总时间时,
    {
    time++; //累加时间计数
    if (time == soundTime) //到达发声时间后,指示关闭蜂鸣器,
    { //插入0.25*总时间的静音间隔,
    enable = 0; //用以区分连续的两个节拍
    }
    }
    }
    }
    }
    /* T0中断服务函数,用于控制蜂鸣器发声 */
    void InterruptTimer0() interrupt 1
    {
    TH0 = T0RH; //重新加载重载值
    TL0 = T0RL;
    tmrflag = 1;
    if (enable) //使能时反转蜂鸣器控制电平
    BUZZ = ~BUZZ;
    else //未使能时关闭蜂鸣器
    BUZZ = 1;
    }

12.实例练习与经验积累

13.UART串口通信 (重点)

  1. 1、并行通信:通信时数据的各个位同时传送,可以实现字节为单位通信,但是通信线多占用资源多,成本高。1110 0100
    
    2、串行通信,一次只能发送一位,(每一位的持续时间----波特率baud)要发送8次才能发送一个字节。
    3.通信时间为通信波特率分之一
    

    image-20240224113726325

  2. 设置image-20240224103729369

指针基础与1602液晶的初步认识

1602液晶与串口的应用实例

I2C总线与EEPROM

实时时钟DS1302

红外通信与DS18B20温度传感器

模数转换AD与数模转换DA

RS485通信与Modbus协议

实践项目开发——多功能电子钟

单片机开发常用工具的使用

PCB设计基础指南